
The Magic Of 
Self-Healing Tests

Execution Cloud

1



2

What we’ll be looking at today

.01 The Make Up Of A Test

.02 Challenges With Locators

.03 Self-Healing Locators

.04 Live Demos



Each Test Case Has Three Main Parts

Test Interaction

3

Test Assertion
Mimicking a user by interacting 

with an application - clicking, 
typing, navigating

Validating that the interaction 
produced an outcome that was 

expected

Test Data
The properties and objects that 

make up the data that will be 
entered into tests



Our Test Case [In English]

1. Visit Login Page
2. Click the “User Name” form entry
3. Enter in our user name
4. Click the “Password” form entry
5. Enter in our password
6. Click the blue submit button
7. Make sure dashboard URL loaded

4

85% of our 
test case is 
simple 
interaction 
with the app



5

But in order to 
“click” this blue 
Sign In button, we 
must rely on the 
DOM.



Our Test Case [Code]

6

Riddled with 
Locators from 
the DOM
● Primary cause for flaky tests 

and delayed feedback

● Extremely high test 

maintenance overhead

● Archaic way to select an 

element



7

Test flakiness comes from problems with 
Interaction, not Verification.

This small change from the dev team will fail the entire test case - 
even if nothing actually changed in the UI.

NoSuchElementException



8

Because testing 
tools “see” like a… computer.



9

Sign In

Class Name: “.btn .btn-primary”

ID Name: “#log-in”

Class Name: “//*[@id="log-in"]”

Version A



10

Sign In

Class Name: “.btn .btn-secondary”

ID Name: “#sign-in”

Class Name: “//*[@id="sign-in"]”

Version B

Our test fails now!

Nothing 
changed to the 
customer!



11



12

Applitools sees your 
application like... Your users.



Applitools Execution Cloud
The first self-healing test infrastructure for open-source frameworks

13

Applitools Execution Cloud is a cloud-based testing platform that enables teams to 
run their tests with open source frameworks, with or without Eyes Checkpoints 
added, on AI-powered testing infrastructure. Our intelligent infrastructure can run 
tests in parallel and self-heal tests that break due to flaky locators.

ACCELERATE TESTING
Launching and running your tests 
in the cloud at infinite scale 
reduces testing time and 
infrastructure maintenance. 

SELF-HEAL TESTS
Self-heals tests from open source 
frameworks that fail from changing 
locators used during navigation so 
less tests fail.

IMPROVE COVERAGE
Run tests with or without Eyes, in 
parallel, on the Execution Cloud to 
improve your overall test 
coverage. 



OS TEST FRAMEWORKS

14

EXECUTION CLOUD

Quickly integrate your framework and 
run tests in Parallel

APPLITOOLS 
SDK

“The ability to run tests at scale in the cloud and leverage AI 
capabilities represents a major shift in the way that testing is done”

Mike Millgate - Director of QE @ EverFi



How does self-healing work?
● Every time we find and element

○ Capture hundreds of data points about the element

■ All attributes, location in hierarchy, details of ancestor and neighbor elements

○ Store data in a DB using the locator as key

● When we can’t locate an element using a given locator

○ Retrieve information from the DB using the failed locator

○ Use proprietary algorithms to find the element based on that information

○ If successful, update the DB and suggest a new locator in our dashboard

15



What can we heal?
● We can find an element even if simultaneously

○ Element properties change (e.g., ID, class, tag name, custom, etc)

○ Text changes (clickable text, input value, label, placeholder)

○ DOM position changes (hierarchy, position in list)

○ Size and location changes

● Adaptive

● Implicitly wait for elements

16



When is self-healing useful
● Avoid test failures and test maintenance following UI changes

● UI pages that frequently change

● Poor locator authoring skills

● Apps with weak locators

● Apps with dynamically generated UI (dynamic ids)

17



Let’s see it live!

18


